Math, asked by mcdyno16, 7 hours ago

if x = log(p), y = 1/p, then d²y/dx² =?​

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\:x = logp

and

\rm :\longmapsto\:y = \dfrac{1}{p}

Now, Consider

\rm :\longmapsto\:x = logp

\rm\implies \:\dfrac{dx}{dp}  = \dfrac{1}{p}  -  -  - (1)

Now,

\rm :\longmapsto\:y = \dfrac{1}{p}

\rm :\longmapsto\:y =  {p}^{ - 1}

\rm :\longmapsto\:\dfrac{dy}{dp} =  - 1 {p}^{ - 1 - 1}

\rm :\longmapsto\:\dfrac{dy}{dp} =  -  {p}^{ - 2}

\rm\implies \:\dfrac{dy}{dp}  \: =  -  \: \dfrac{1}{ {p}^{2} }

So,

\rm :\longmapsto\:\dfrac{dy}{dx}

\rm \:  =  \: \dfrac{dy}{dp} \div \dfrac{dx}{dp}

\rm \:  =  \:  - \dfrac{1}{ {p}^{2} }  \div \dfrac{1}{p}

\rm \:  =  \:  - \dfrac{1}{ p }

\bf\implies \:\dfrac{dy}{dx} \:  =  \:  -  \: \dfrac{1}{p}

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{ {d}^{2}y }{d {x}^{2} } =  - \dfrac{d}{dx} {p}^{ - 1}

\rm :\longmapsto\:\dfrac{ {d}^{2}y }{d {x}^{2} } =   {p}^{ - 1 - 1} \dfrac{dp}{dx}

\rm :\longmapsto\:\dfrac{ {d}^{2}y }{d {x}^{2} } =   {p}^{ - 2}   \times p  \:  \:  \:  \:  \:  \:  \:  \:  \:  \{using \: (1) \}

\rm :\longmapsto\:\dfrac{ {d}^{2}y }{d {x}^{2} } =   {p}^{ - 2 + 1}

\rm :\longmapsto\:\dfrac{ {d}^{2}y }{d {x}^{2} } =   {p}^{ - 1}

\bf\implies \:\dfrac{ {d}^{2}y }{d {x}^{2} } =  \dfrac{1}{p}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

MORE TO KNOW

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Answered by HarshitJaiswal2534
0

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\:x = logp

and

\rm :\longmapsto\:y = \dfrac{1}{p}

Now, Consider

\rm :\longmapsto\:x = logp

\rm\implies \:\dfrac{dx}{dp}  = \dfrac{1}{p}  -  -  - (1)

Now,

\rm :\longmapsto\:y = \dfrac{1}{p}

\rm :\longmapsto\:y =  {p}^{ - 1}

\rm :\longmapsto\:\dfrac{dy}{dp} =  - 1 {p}^{ - 1 - 1}

\rm :\longmapsto\:\dfrac{dy}{dp} =  -  {p}^{ - 2}

\rm\implies \:\dfrac{dy}{dp}  \: =  -  \: \dfrac{1}{ {p}^{2} }

So,

\rm :\longmapsto\:\dfrac{dy}{dx}

\rm \:  =  \: \dfrac{dy}{dp} \div \dfrac{dx}{dp}

\rm \:  =  \:  - \dfrac{1}{ {p}^{2} }  \div \dfrac{1}{p}

\rm \:  =  \:  - \dfrac{1}{ p }

\bf\implies \:\dfrac{dy}{dx} \:  =  \:  -  \: \dfrac{1}{p}

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{ {d}^{2}y }{d {x}^{2} } =  - \dfrac{d}{dx} {p}^{ - 1}

\rm :\longmapsto\:\dfrac{ {d}^{2}y }{d {x}^{2} } =   {p}^{ - 1 - 1} \dfrac{dp}{dx}

\rm :\longmapsto\:\dfrac{ {d}^{2}y }{d {x}^{2} } =   {p}^{ - 2}   \times p  \:  \:  \:  \:  \:  \:  \:  \:  \:  \{using \: (1) \}

\rm :\longmapsto\:\dfrac{ {d}^{2}y }{d {x}^{2} } =   {p}^{ - 2 + 1}

\rm :\longmapsto\:\dfrac{ {d}^{2}y }{d {x}^{2} } =   {p}^{ - 1}

\bf\implies \:\dfrac{ {d}^{2}y }{d {x}^{2} } =  \dfrac{1}{p}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

MORE TO KNOW

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Similar questions