Math, asked by dusanebhushan2, 4 months ago

if x log y - y log x = 2 find dy/dx

Answers

Answered by senboni123456
4

Step-by-step explanation:

We have,

x log(y)  - y log(x)  = 2

 \implies log(y) +  \frac{x}{y}  \frac{dy}{dx}  -  \frac{y}{x}  -  log(x ) . \frac{dy}{dx}  = 0 \\

 \implies log(y)    -   \frac{y}{x}   +   (\frac{x}{y} -  log(x ) )\frac{dy}{dx}  = 0 \\

 \implies      (\frac{x}{y} -  log(x ) )\frac{dy}{dx}  =    \frac{y}{x} -  log(y) \\

 \implies     \frac{dy}{dx}  = \frac{    \frac{y}{x} -  log(y)}{  \frac{x}{y} -  log(x ) } \\

Similar questions