Math, asked by gubbalamanohar, 3 days ago

if x = log3 base 2, y = log5 base 2 then evaluate log15 base 2 in terms of x and y.

Answers

Answered by gsai1595
6

Answer:

log 15 = x+y

Step-by-step explanation:

log 15= log 3×5

log m×n= log m + log n

log 3×5 = log 3 + log 5

log 15 = x+y

Answered by pulakmath007
20

\displaystyle \sf{  log_{2}(15)  = x + y }

Given :

\displaystyle \sf{  log_{2}(3)   = x \:, \: log_{2}(5) = y }

To find :

The value of \displaystyle \sf{  log_{2}(15)    } in terms of x and y

Formula :

\displaystyle \sf{  log_{a}(xy)  =  log_{a}(x) +  log_{a}(y)   }

Solution :

Step 1 of 2 :

Write down the given data

\displaystyle \sf{  log_{2}(3)   = x \:, \: log_{2}(5) = y }

Step 2 of 2 :

Find the value of the expression

\displaystyle \sf{  log_{2}(15)    }

\displaystyle \sf{ =   log_{2}(3 \times 5)    }

\displaystyle \sf{  = log_{2}(3) +log_{2}(5)  }

\displaystyle \sf{  = x + y  }

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. If 2log((x+y)/(4))=log x+log y then find the value of (x)/(y)+(y)/(x)

https://brainly.in/question/24081206

2. If log (0.0007392)=-3.1313 , then find log(73.92)

https://brainly.in/question/21121422

Similar questions