Math, asked by divyashanthd, 1 month ago

If x=log9/7, y = log'7/5, z =log5/3. Show that xyz = 2​

Answers

Answered by kamalhajare543
8

Answer:

Answer:

 \sf \: xyz=3

Step-by-step explanation:

Formula used:

Base changing rule:

 \sf \: log_a{c}=(log_a{b})(log_b{c})

Power rule:

  \sf \: log_aM^n=n\:log_am

 \sf \: log_a{a}=1

Given:

 \sf \: x=log_5{7}

 \sf \: y=log_7{27}

 \sf \: z=log_3{5}

Now,

 \sf \: xyz=(log_5{7})(log_7{27})(log_3{5}) \:

 \sf \: xyz=(log_5{27})(log_3{5})

 \sf \: xyz=(log_5{3^3})(log_3{5})

 \sf \: xyz=3(log_5{3}) \:  \: (log_3{5})xyz=3

 \sf \: xyz=3(log_5 {5})

 \sf \: xyz=3 \:     \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   ...(1)

xyz=3

Hence proved

Similar questions