Math, asked by Tushaar1, 1 year ago

if x=logbc base a, y=logca base b, z=logab base c then prove That x+y+z=xyz-2

Answers

Answered by birendrak1975
63
I hope this helps.
You will not get the answer if you try it one go by solving only the LHS. In the rough try to solve the RHS and back trace the question till you get an expression in the LHS and just write the steps in reverse in the RHS side
Attachments:
Answered by Shubhendu8898
167

Using  property:- p=\log_qr\implies q^{p}=r

x=\log_abc\implies a^{x}=bc\\\;\\y=\log_bca\implies b^{x}=ca\\\;\\z=\log_cab\implies c^{x}=ab

Now,

a^{xyz}=(a^{x})^{yz}\\\;\\=(bc)^{yz}\\\;\\=(b^{y})^{z}\times(c^{z})^{y}\\\;\\=(ca)^{z}\times(ab)^{y}\\\;\\=c^{z}.a^{z}\times a^{y}.b^{y}\\\;\\=ab.a^{z+y}.b^{y}\\\;\\=a^{1+z+y}\times b.b^{y}\\\;\\=a^{1+z+y}\times b.ca\\\;\\=a^{1+z+y+1}\times bc\\\;\\=a^{2+z+y}.a^{x}\\\;\\a^{xyz}=a^{x+y+z+2}\\\;\\xyz=x+y+z+2\\\;\\xyz-x-y-z=2

Similar questions