Math, asked by Omgupta17, 9 months ago

If x=logt and y=1/t then prove that d2y/dx2 + dy/dx=0

Answers

Answered by MaheswariS
3

\textbf{Given:}

x=\logt\;\text{and}\;y=\frac{1}{t}

\textbf{To prove:}

\dfrac{d^2y}{dx^2}+\dfrac{dy}{dx}=0

x=\log\,t\;\implies\;\dfrac{dx}{dt}=\frac{1}{t}

y=t^{-1}\;\implies\;\dfrac{dy}{dt}=-t^{-2}

\text{Now,}

\dfrac{dy}{dx}=\dfrac{\frac{dy}{dt}}{\frac{dx}{dt}}

\dfrac{dy}{dx}=\dfrac{-t^{-2}}{\frac{1}{t}}

\dfrac{dy}{dx}=-t^{-2}{\times}t

\implies\bf\dfrac{dy}{dx}=-t^{-1}

\text{Differentiate with respect to x}

\dfrac{d^2y}{dx^2}=\dfrac{d(-t^{-1})}{dx}

\dfrac{d^2y}{dx^2}=\dfrac{d(-t^{-1})}{dt}\,\dfrac{dt}{dx}

\dfrac{d^2y}{dx^2}=(t^{-2})\,\dfrac{1}{\frac{dx}{dt}}

\dfrac{d^2y}{dx^2}=(t^{-2})\,\dfrac{1}{\frac{1}{t}}

\dfrac{d^2y}{dx^2}=(t^{-2})t

\dfrac{d^2y}{dx^2}=t^{-1}

\text{Consider}

\dfrac{d^2y}{dx^2}+\dfrac{dy}{dx}

=t^{-1}+(-t^{-1})

=t^{-1}-t^{-1}

=\frac{1}{t}-\frac{1}{t}

=0

\implies\bf\dfrac{d^2y}{dx^2}+\dfrac{dy}{dx}=0

Find more:

1.Y = (tan x +cot x)/ (tan x - cotx ) then dy/dx =?

https://brainly.in/question/3429497

2.If y=√x+1/√x show that 2x d y /dx +y =2√x

https://brainly.in/question/5156094

3.If y = tan^–1(sec x + tan x), then find dy/dx.

https://brainly.in/question/8085217

4.If y= log tan(π/4+x/2),show that dy/dx=secx

https://brainly.in/question/5012403

Similar questions