If x = m sin theta and y = n cos theta, then find the value of n²x²
+ m²y²
Answers
Answered by
13
Answer:
(mn)²
Step-by-step explanation:
Given, x = m sinθ
y = n cosθ
sinθ = x/m
cosθ = y/n
∵ cos²θ + sin²θ = 1
=> y²/n² + x²/m² = 1
=> x²n² + y²m²/m²n² = 1
=> x²n² + y²m² = m²n²
=> n²x² + m²y² = (mn)²
Thank you.
Mark me as brainliest if it is helpful for you.
Answered by
2
Answer:
(mn)²
Step-by-step explanation:
Given, x = m sinθ
y = n cosθ
sinθ = x/m
cosθ = y/n
∵ cos²θ + sin²θ = 1
=> y²/n² + x²/m² = 1
=> x²n² + y²m²/m²n² = 1
=> x²n² + y²m² = m²n²
=> n²x² + m²y² = (mn)²
Similar questions