if x minus a into x minus b plus x minus b into x minus c plus x minus c plus x minus a is equal to 0 and a minus b is qual to c then find x
Answers
Answer:
(X-A) × (X-B)+(X-B) × (X-C) + (X-C) × (X-A) =0
X2-BX-AX+AB+X2-CX-BX+BC+X2-AX-CX+CA=0
3X2-2AX-2BX-2CX+AB+BC+CA=0
3X2-2X(A+B+C)+AB+BC+CA=0
Sum of the roots =- b/a
=-(-2(A+B+C))/3
=2(A+B+C)/3
product of the roots=c/a=AB+BC+CA/3
Answer:
x = 0 or x = (2ab - ac - bc)/(a + b - 2c).
Step-by-step explanation:
Hi,
Given a/(x - a) + b/(x - b) = 2c/( x - c)
On adding 2 on both sides, we get
a/(x - a) + 1 + b/(x - b) + 1 = 2c/(x - c) + 2
On simplifying , we get
x/( x - a) + x/( x - b) = 2x/(x - c)
x/( x - a) + x/( x - b) - 2x/(x - c) = 0
Taking x common out we get
x[ 1/ x-a + 1/x-b - 2/x-c] = 0
Hence either x = 0 or
1/ x-a + 1/x-b - 2/x-c = 0
1/ x-a + 1/x-b = 2/x-c
(2x - (a+b))(x -c) = 2(x-a)(x-b)
2x² -x(2c + a + b) + c(a + b) = 2(x² -x(a + b) + ab)
(a + b - 2c)x = 2ab - ac - bc
x = (2ab - ac - bc)/(a + b - 2c).
Hence, solutions are x = 0 or x = (2ab - ac - bc)/(a + b - 2c).
Hope, it helps !