if x minus one by x is equal to 3 find the value of x 4 + 1 by x to the power 4
Answers
Answer:
Step-by-step explanation:
Given that-
Find
Using formula-
So,
Squaring on both sides-
Hence,
Step-by-step explanation:
4+x41=119
Step-by-step explanation:
Given that-
x - \dfrac{1}{x} = 3x−x1=3
Find x^{4} + \dfrac{1}{x^{4} } = ?x4+x41=?
Using formula-
(a-b)^{2} = a^{2}+b^{2}-2ab(a−b)2=a2+b2−2ab
So, (x-\dfrac{1}{x} )^{2}= x^{2} + \dfrac{1}{x^{2} } - 2.(x).(\dfrac{1}{x})(x−x1 )2=x2+x21−2.(x).(x1)
(3)^{2} = x^{2} + \dfrac{1}{x^{2} } - 2(3)2=x2+x21−2
9 = x^{2} + \dfrac{1}{x^{2} } - 29=x2+x21−2
x^{2} + \dfrac{1}{x^{2} } = 9 + 2x2+x21=9+2
x^{2} + \dfrac{1}{x^{2} } = 11x2+x21=11
Squaring on both sides-
[x^{2}+\dfrac{1}{x^{2} } ]^{2} = (x^{2} )^{2} + (\dfrac{1}{x^{2} } )^{2} + 2.(x^{2}).(\dfrac{1}{x^{2} })[x2+x21 ]2=(x2)2+(x21)2+2.(x2).(x21)
(11)^{2} = x^{4} + \dfrac{1}{x^{4} } + 2.(1)(11)2=x4+x41+2.(1)
121 = x^{4} + \dfrac{1}{x^{4}} + 2121=x4+x41+2
x^{4}+\dfrac{1}{x^{4}} = 121 - 2x4+x41=121−2
Hence, x^{4}+\dfrac{1}{x^{4} }= 119x4+x41=119