Math, asked by varnika21, 1 year ago

if x minus one upon x is equal to 3 then find the value of x cube minus one by x cube equal to

Answers

Answered by slicergiza
55

Answer:

It would be equal to 36.

Step-by-step explanation:

Given,

x-\frac{1}{x}=3

\implies (x-\frac{1}{x})^3=27

Since, (a - b)³ = a³ - 3a²b + 3ab² - b³,

So,

(x-\frac{1}{x})^3 = x^3 - 3x^2(\frac{1}{x}) + 3x(\frac{1}{x})^2 - (\frac{1}{x})^3

=x^3 - 3x + \frac{3x}{x^2} - \frac{1}{x^3}

=x^3 - 3x +\frac{3}{x} - \frac{1}{x^3}

=x^3 -\frac{1}{x^3}-3(x-\frac{1}{x})

=x^3 - \frac{1}{x^3}-3(3)

=x^3 -\frac{1}{x^3}-9

\implies x^3 -\frac{1}{x^3}-9 = 27

\implies x^3 -\frac{1}{x^3} = 27 + 9 = 36

Learn more:

https://brainly.in/question/10105256

https://brainly.in/question/10877937

Answered by mysticd
26

Answer:

 \red { Value \: of \: x^{3}-\left(\frac{1}{x}\right)^{3}} = \green { 36 }

Step-by-step explanation:

 Given \: x -\frac{1}{x} = 3 \: ---(1)

\boxed {\pink {a^{3}-b^{3} = (a-b)^{3} +3ab(a-b)}}

 x^{3}-\left(\frac{1}{x}\right)^{3}\\ = \left(x-\frac{1}{x}\right)^{3} + 3\times x \times \frac{1}{x}\left(x-\frac{1}{x}\right)

=\left(x-\frac{1}{x}\right)^{3} + 3\times \left(x-\frac{1}{x}\right)

= 3^{3} +3 \times 3\\= 27 + 9\\=36\: [ From \: (1)]

Therefore.,

 \red { Value \: of \: x^{3}-\left(\frac{1}{x}\right)^{3}} = \green { 36 }

•••♪

Similar questions