Math, asked by ojularoiya, 10 months ago

if x minus one upon x is equal to 7, evaluate first X square + 1 upon x square

Answers

Answered by tahseen619
3

51

Step-by-step explanation:

Given:

x -  \dfrac{1}{x}  = 7

To find:

{x}^{2}  +  \dfrac{1}{ {x}^{2} }

Solution:

Just square both side and recover your forgotten Algebra Formula.

x -  \frac{1}{x} = 7 \\  \\  {(x -  \frac{1}{x}) }^{2} =  {(7)}^{2} \\  \\  {x}^{2}  +  \frac{1}{ {x}^{2} } - 2.x. \frac{1}{x}  = 49 \\  \\  {x}^{2} +  \frac{1}{ {x}^{2} }  - 2 = 49 \\  \\  {x}^{2}  +  \frac{1}{ {x}^{2} }  = 49 + 2 \\  \\  {x}^{2} +  \frac{1}{ {x}^{2} }   = 51

Therefore, the required answer is 51.

Important Algebra Formula

 {(x + y)}^{2}={x}^{2}+{y}^{2}+2xy\\ \\{(x - y)}^{2}={x}^{2}+{y}^{2}-2xy\\ \\{(x+y)}^{2}= (x - y) {}^{2}+4xy\\ \\{(x-y)}^{2}=(x+y){}^{2}-4xy\\ \\ (x + y)^{2}+(x-y)^{2}=2( {x}^{2}+{y}^{2})

Similar questions