Math, asked by laxmi09, 11 months ago

if x minus root 5 is a factor of the cubic polynomial x cube minus 3 root 5 x square + 13 x minus 3 root 5 find all the zeros of the polynomial​

Answers

Answered by ashishks1912
5

GIVEN :

If x-\sqrt{5} is a factor of the cubic polynomial x^3-3\sqrt{5}x^2+ 13 x-3\sqrt{5}

TO FIND :

The zeroes of the given polynomial​.

SOLUTION :

Given cubic polynomial is x^3-3\sqrt{5}x^2+ 13 x-3\sqrt{5}

Also given that x-\sqrt{5} is a factor for the given polynomial.

Let p(x)=x^3-3\sqrt{5}x^2+ 13 x-3\sqrt{5}

Since x-\sqrt{5} is a factor for the given polynomial

It must satisfy the given polynomial.

ie., p(x)=0 for x=\sqrt{5}

Put x=\sqrt{5} in p(x) we get

p(\sqrt{5})=(\sqrt{5})^3-3\sqrt{5}(\sqrt{5})^2+ 13(\sqrt{5})-3\sqrt{5}

p(\sqrt{5})=(\sqrt{5})^3-3\sqrt{5}(\sqrt{5})^2+ 13(\sqrt{5})-3\sqrt{5}

=5\sqrt{5}-3(5)\sqrt{5}+13\sqrt{5}-3\sqrt{5}

=5\sqrt{5}-15\sqrt{5}+13\sqrt{5}-3\sqrt{5}

=18\sqrt{5}-18\sqrt{5}

= 0

p(\sqrt{5})=0

x=\sqrt{5} is a zero for the given polynomial.

By using Synthetic Division we can find other zeroes :

Since x=\sqrt{5} is a zero for the given polynomial we have,

\sqrt{5} _| 1    -3\sqrt{5}     13    -3\sqrt{5}

        0     \sqrt{5}        -10   3\sqrt{5}

        _______________________________________

        1      -2\sqrt{5}     3      0

Now we have the quadratic equation

x^2-2\sqrt{5}x+3=0  

For Quadratic equation ax^2+bx+c=0 then

x=\frac{-b\pm \sqrt{b^2-4ac}}{2a}

x=\frac{-(-2\sqrt{5})\pm \sqrt{(-2\sqrt{5})^2-4(1)(3)}}{2(1)}

=\frac{2\sqrt{5}\pm \sqrt{(-2)^2(\sqrt{5})^2-12}}{2}

=\frac{2\sqrt{5}\pm \sqrt{4(5)-12}}{2}

=\frac{2\sqrt{5}\pm \sqrt{20-12}}{2}

=\frac{2\sqrt{5}\pm \sqrt{8}}{2}

=\frac{2\sqrt{5}\pm 2\sqrt{2}}{2}

=\frac{2(\sqrt{5}\pm \sqrt{2})}{2}

=\sqrt{5}\pm \sqrt{2}

x=\sqrt{5}+\sqrt{2} and x=\sqrt{5}-\sqrt{2}

∴ the other zeroes are \sqrt{5}+\sqrt{2} and \sqrt{5}-\sqrt{2} for the given cubic polynomial x^3-3\sqrt{5}x^2+ 13 x-3\sqrt{5}

Similar questions