Math, asked by twahlang4564, 11 months ago

If x minus y equals to 4 and x y equal to 21 then find the value of x cube minus y cube

Answers

Answered by ihrishi
32

Step-by-step explanation:

given \: x  - y = 4 \:  and  \: xy = 21 \\   \\  cubing \: both \: sides\:of  \: x - y = 4\\  {(x - y)}^{3}  =  {4}^{3}  \\  {x}^{3}  -  {y}^{3}  - 3xy(x - y) = 64 \\ {x}^{3}  -  {y}^{3}  - 3 \times 21 \times 4 \: = 64 \\ {x}^{3}  -  {y}^{3}  -252= 64 \:  \\ {x}^{3}  -  {y}^{3}  = 64 + 252 \\ {x}^{3}  -  {y}^{3}  = 316

Answered by wifilethbridge
9

The value of x^3-y^3 are -370 or 316

Step-by-step explanation:

Given Equations: x-y = 4  --- 1

                           xy=21 ---2

Substitute the value of x from 2 in 1

x-y = 4

\frac{21}{y}-y=4

21-y^2=4y

y^2-21+4y=0

(y-3)(y+7)=0

y=3,-7

Substitute the value of x in 1

At y = 3

x-y = 4

x-3=4

x= -7

So, x^3-y^3=(-7)^3-3^3=-370

At y=-7

x-(-7) = 4

x+7=4

x= 4-7

x= -3

So,x^3-y^3=(-3)^3-(-7)^3=316

Hence  the value of x^3-y^3 are -370 or 316

#Learn more:

If x is equal to 2 minus y then find the value of x cube + y cube minus 5​

https://brainly.in/question/10413038

Similar questions