Math, asked by meanishasharma, 1 year ago

If x^p^q = (x^√p)^q. Find p in terms of q.

Answers

Answered by MaheswariS
1

Answer:

p=q^{\frac{2}{2q-1}}

Step-by-step explanation:

Given:

x^{p^q}=(x^{\sqrt{p}})^q

x^{p^q}=x^{q{\sqrt{p}}}

Equating powers on both sides, we get

p^q=q\sqrt{p}

p^q=q{p^\frac{1}{2}}

\frac{p^q}{p^\frac{1}{2}}=q

p^q.p^\frac{-1}{2}=q

p^{q-\frac{1}{2}}=q

p^{\frac{2q-1}{2}}=q

Raising both sides to the power \frac{2}{2q-1}

p=q^{\frac{2}{2q-1}}

Similar questions