If x = p sec θ + q tan θ and y = p tan θ + q sec θ, then prove that x2 – y2 = p2 – q2
Answers
Answered by
22
Step-by-step explanation:
hope u will like it...
Attachments:
Answered by
20
Answer:
x²-y²=p²+q²
Step-by-step explanation:
here given x= p secθ +qtanθ
y=ptanθ +q secθ
if we substitute x and y in equation x²-y²
x²-y²=(p secθ +qtanθ)²- (ptanθ +q secθ)²
=[(p sec θ )²+(qtan θ )²+2 pq sec θ tan θ ] - [(p tan θ)²+(qsec θ )²+2pq sec θ tan θ ]
=p² sec² θ + q²tan² θ + 2pq sec θ tan θ - p² tan² θ -q²sec² θ -2pq sec θ tan θ
= p² sec² θ +q²tan² θ -p²tan² θ -q²sec² θ
=p²(sec² θ -tan² θ ) + q²(sec² θ -tan² θ ) =p²+q²
here we know sec² θ -tan² θ =1
therefore. x²-y²=p²+q²
hence proved
Similar questions