Math, asked by harshashi, 10 months ago

If x power 1-log x base 5=0.04,then among the following,correct statement is a)1by5 b)5 c)1by25 d)35

Answers

Answered by Swarup1998
26

\underline{\textsf{We have to find the value of x here}}\bold{:}

\mathsf{Now,\:x^{1-log_{5}x}=0.04}

\textsf{Taking log to both sides}\bold{:}

\quad \mathsf{log\big( x^{1-log_{5}x}\big)=log(0.04)}

\mathsf{Using\:log(a^{b})=b\:log(a)}\bold{:}

\to \mathsf{(1-log_{5}x)\:log(x)=log(0.04)}

\mathsf{We\:know\:that\:log_{a}(b)=\frac{log(a)}{log(b)}}\bold{:}

\quad \mathsf{\big(1-\frac{log(x)}{log(5)}\big)\:log(x)=log\big(\frac{1}{25}\big)}

\to \mathsf{log(x)-\frac{\{log(x)\}^{2}}{log(5)}=log(1)-log(25)}

\mathsf{Here,\:log(1)=0\:\&\:log(25)=2\:log(5)}\bold{:}

\quad \mathsf{log(5)\:log(x)-\{log(x)\}^{2}=-2\:\{log(5)\}^{2}}

\to \mathsf{\{log(x)\}^{2}-log(5)\:log(x)-2\:\{log(5)\}^{2}}

\textsf{Factorising, we get}\bold{:}

\quad \mathsf{\{log(x)-2\:log(5)\}\:\{log(x)+log(5)\}=0}

\therefore \mathsf{either\:log(x)-2\:log(5)=0}

\quad \mathsf{or,\:log(x)+log(5)=0}

\implies \mathsf{log(x)=log(5^{2}=log(25)}

\mathsf{\quad or,\:log(x)=log(\frac{1}{5})}

\implies \boxed{\mathsf{x=25,\:\frac{1}{5}}}

\textsf{The correct statement is option (a).}

\underline{\textsf{More questions related to logarithms}}\bold{:}

1. 4^x = 0.008^y = 10^z. Find the relation between x, y, z.

https://brainly.in/question/16145806

2. 1 ÷ logxy(xyz) + 1 ÷ logyz(xyz) + 1 ÷ logzx(xyz) = 2.

https://brainly.in/question/9310919

Answered by harshininathan14
9

Answer:

here is your answer

Step-by-step explanation:

please mark me as brainlist

Attachments:
Similar questions