Math, asked by 790656, 6 months ago

If x power 2+1/x power 2=98, then find value of (x power 3+1/x power 3)



Answers

Answered by Anonymous
5

Question :

If \bf{x^{2} + \dfrac{1}{x^{2}} = 98} , then find the value of \bf{x^{3} + \dfrac{1}{x^{3}}}

Solution :

By solving the equation , we get :

:\implies \bf{x^{2} + \dfrac{1}{x^{2}} = 98}

We know that ,

\bf{a^{2} + b^{2} = (a + b)^{2} - 2ab}

By using the above formula, we get :

:\implies \bf{\bigg(x + \dfrac{1}{x}\bigg)^{2} - 2 \times x \times \dfrac{1}{x} = 98} \\ \\ \\

:\implies \bf{\bigg(x + \dfrac{1}{x}\bigg)^{2} - 2 \times \not{x} \times \dfrac{1}{\not{x}} = 98} \\ \\ \\

:\implies \bf{\bigg(x + \dfrac{1}{x}\bigg)^{2} - 2 = 98} \\ \\ \\

:\implies \bf{\bigg(x + \dfrac{1}{x}\bigg)^{2} = 98 + 2} \\ \\ \\

:\implies \bf{\bigg(x + \dfrac{1}{x}\bigg)^{2} = 100} \\ \\ \\

:\implies \bf{x + \dfrac{1}{x} = \sqrt{100}} \\ \\ \\

:\implies \bf{x + \dfrac{1}{x} = 10} \\ \\ \\

\boxed{\therefore \bf{x + \dfrac{1}{x} = 10}}⠀⠀⠀⠀⠀⠀⠀Eq.(i)

Now by cubing the equation (i) , we get :

:\implies \bf{\bigg(x + \dfrac{1}{x}\bigg)^{3} = 10^{3}} \\ \\ \\

We know that ,

\bf{(a + b)^{3} = a^{3} + b^{3} + 3ab(a + b)}

By using the above formula, we get :

:\implies \bf{x^{3} + \bigg(\dfrac{1}{x}\bigg)^{3} + 3 \times x \times \dfrac{1}{x}\bigg(x + \dfrac{1}{x}\bigg) = 10^{3}} \\ \\ \\

:\implies \bf{x^{3} + \bigg(\dfrac{1}{x}\bigg)^{3} + 3 \times \not{x} \times \dfrac{1}{\not{x}}\bigg(x + \dfrac{1}{x}\bigg) = 10^{3}} \\ \\ \\

:\implies \bf{x^{3} + \bigg(\dfrac{1}{x}\bigg)^{3} + 3\bigg(x + \dfrac{1}{x}\bigg) = 10^{3}} \\ \\ \\

We know the value of x + 1/x (i.e, 10) , so by putting it in the Equation , we get :

:\implies \bf{x^{3} + \bigg(\dfrac{1}{x}\bigg)^{3} + 3 \times 10 = 10^{3}} \\ \\ \\

:\implies \bf{x^{3} + \bigg(\dfrac{1}{x}\bigg)^{3} + 30 = 10^{3}} \\ \\ \\

:\implies \bf{x^{3} + \bigg(\dfrac{1}{x}\bigg)^{3} + 30 = 1000} \\ \\ \\

:\implies \bf{x^{3} + \dfrac{1}{x^{3}} = 1000 - 30} \\ \\ \\

:\implies \bf{x^{3} + \dfrac{1}{x^{3}} = 970} \\ \\ \\

\boxed{\therefore \bf{x^{3} + \dfrac{1}{x^{3}} = 970}} \\ \\ \\

Hence the value of \bf{x^{3} + \dfrac{1}{x^{3}}} is 970.

Answered by Anonymous
7

Solution:

  • x² + 1/x² = 98 ... given ... (1)

Note:

  • x (1/x) = 1

» x² + 1/x² = 98

Add 2 on both sides

» x² + 2(x)(1/x) + 1/x² = 100

» (x + 1/x)² = 100

» x + 1/x = 10 ... (2)

Now, x³ + 1/x³ = (x + 1/x) (x² - (x) (1/x) + 1/x²)

from (1) and (2),

» x³ + 1/x³ = 10 (98 - 1)

» x³ + 1/x³ = 970

Similar questions