If x= psecθ + qtanθ and y = ptanθ + q secθ, then prove that x 2 – y 2 = p 2 –q 2
Answers
Answered by
2
x²= (psecθ + qtanθ)
p²sec²θ+q²tan²θ+2psecθtanθ
y² = (ptanθ + q secθ)²
q²sec²θ+p²tan²θ+2psecθqtanθ
x²-y²=p²sec²θ+q²tan²θ+2psecθqtanθ-q²sec²θ-p²tan²θ-2psecθqtanθ
x²-y²=p²sec²θ-p²tan²θ-q²sec²θ+q² tan²θ
x²-y²=p²(sec²θ-tan²θ) - q²(sec²θ-tan²θ)
x²-y²=(sec²θ-tan²θ) (p²-q²)
sec²θ-tan²θ = 1
x²-y²=p²-q²
Similar questions