If x=psecalphacosbeta y=qsecalphasinbeta and z=rtanalpha then show that
x²/p²+y²/q²-z²/r²= 1
Answers
Answered by
1
Step-by-step explanation:
x=p sec α cos β
y=q sec α sin β
z= r tanα
now, x= p secα cosβ
or, sec α sin β = x/p
or, sec²α cos² β= x²/p²
similarly ,y= q secα sin β
or, sec α sin β = y/q
or, sec²α sin² β= y²/q²
z= r tan α
or, tan α=z/r
or,tan²α=z²/ r²
so, x²/p²+ y²/q² -z²/ r²
= sec²α cos²β + sec²α sin²β -tan² α
= sec²α( sin²β +cos²β) - tan²α
= sec²α - tan² α= 1 (proved)
hope u got the answer!
Similar questions