If x = r cos A sin B, y = r cos A cosB and z = r sinA, then prove that x^2+y^2+z^2=r^2
Answers
Answered by
1
Note: sin²x + cos²x = 1
Step-by-step explanation:
Square on both sides of x, y and z:
x² = (rcosAsinB)² = r²cos²Asin²B
y² = (rcosAcosB)² = r²cos²Acos²B
z² = (rsinA)² = r²sin²A
Add x² and y²:
=> x² + y² = r²cos²Asin²B + r²cos²Acos²B
= r²cos²A(sin²B + cos²B)
= r²cos²A(1)
= r²cos²A
Now, adding (x² + y²) and z²:
=> x² + y² + z² = r²cos²A + r²sin²A
=> x² + y² + z² = r²(cos²A + sin²A) = r²(1)
=> x² + y² + z² = r², as desired
Similar questions