Math, asked by Anonymous, 1 month ago

if x = r cos α sin β, y = r cos α cos β and z = r sin α , prove that x^2 + y^2 + z^2 = r^2.

Answers

Answered by CopyThat
33

EXPLANATION :-

GIVEN :-

⇒ x = r cos α sin β

⇒ y = r cos α cos β

⇒ z = r sin α

TO PROVE :-

⇒ x² + y² + z² = r²

SOLUTION :-

We have:

  • x² + y² + z²

⇒ (r cos α sin β)² + (r cos α cos β)² + (r sin α)²

⇒ r² cos²α sin²β + r² cos²α cos²β + r² sin²α

⇒ r² cos²α (sin²β + cos²β) + r² sin²α

[∵ sin²α + cos²β = 1]

⇒ r² cos²α + r² sin²α

⇒ r²(cos²α + sin²α) = r²

[∵ cos²α + sin²α = 1]

⇒ r² = r²

∴ L.H.S = R.H.S

Answered by amansharma264
13

EXPLANATION.

⇒ x = r cosα. sinβ.

⇒ y = r cosα. cosβ.

⇒ z = r sinα.

As we know that,

We can write equation as,

⇒ x = r cosα. sinβ.

Squaring on both sides of the equation, we get.

⇒ (x)² = (r cosα. sinβ)².

⇒ x² = r². cos²α. sin²β. - - - - - (1).

⇒ y = r cosα. cosβ.

Squaring on both sides of the equation, we get.

⇒ y² = (r cosα. cosβ)².

⇒ y² = r². cos²α. cos²β. - - - - - (2).

⇒ z = r sinα.

Squaring on both sides of the equation, we get.

⇒ z² = r². sin²α. - - - - - (3).

To find :

⇒ x² + y² + z² = r².

Put the values in the equation, we get.

⇒ r². cos²α. sin²β + r². cos²α. cos²β + r². sin²α.

⇒ r² cos²α [sin²β + cos²β] + r² sin²α.

⇒ r² cos²α + r² sin²α.

⇒ r² [cos²α + sin²α].

⇒ r².

Hence proved.

Similar questions