If x=r cosA and y=r sinA then prove that x square+y square=r sauare
Answers
Answered by
1
Solution:
It is given that,.
x = rcosA
=> x² = (rcosA)²
=> x² = r²cos²A ----(1)
y = rsinA
=> y² = (rsinA)²
=> y² = r²sin²A ----(2)
Add (1) &(2) ,we get
=>x²+y² = r²cos²A+r²sin²A
= r²(cos²A+sin²A)
= r²
••••
It is given that,.
x = rcosA
=> x² = (rcosA)²
=> x² = r²cos²A ----(1)
y = rsinA
=> y² = (rsinA)²
=> y² = r²sin²A ----(2)
Add (1) &(2) ,we get
=>x²+y² = r²cos²A+r²sin²A
= r²(cos²A+sin²A)
= r²
••••
Similar questions