If x = r sin A cos B, y = r sin A sin B and z = r cos A, then prove that:
Answers
Answered by
8
what should you prove ?
if x^2+y^2+z^2=R^2
x^2+y^2+z^2=( R.sinA.cosB)^2 + (R.sinA.sinB)^2+(R.cosA)^2
R^2 is common. After expanding ,
=R^2[(sinA^2)(cosB^2 + sinB^2) + (cosA^2)]
Use the Identity cos^2 + sin^2 = 1..
=R^2 [(sinA^2)*1 + cosA^2)
=R^2( sinA^2 + cosA^2)
=R^2 * 1
=R^2..
hence proved.
if x^2+y^2+z^2=R^2
x^2+y^2+z^2=( R.sinA.cosB)^2 + (R.sinA.sinB)^2+(R.cosA)^2
R^2 is common. After expanding ,
=R^2[(sinA^2)(cosB^2 + sinB^2) + (cosA^2)]
Use the Identity cos^2 + sin^2 = 1..
=R^2 [(sinA^2)*1 + cosA^2)
=R^2( sinA^2 + cosA^2)
=R^2 * 1
=R^2..
hence proved.
Answered by
11
Step-by-step explanation:
Given,
x = r sin A cos B, y = r sin A sin B and z = r cos A
we have to prove,
Now,
=
By using the Identity
=
=
=
⇒
Hence proved.
*refer the givrn link for complete question:
https://brainly.in/question/4602202
Similar questions