Math, asked by raheel8726, 1 year ago

If x = r sin A cos B, y = r sin A sin B and z = r cos A, then prove that:

Answers

Answered by msn7
8
what should you prove ?
if x^2+y^2+z^2=R^2
x^2+y^2+z^2=( R.sinA.cosB)^2 + (R.sinA.sinB)^2+(R.cosA)^2
R^2 is common. After expanding ,
=R^2[(sinA^2)(cosB^2 + sinB^2) + (cosA^2)]
Use the Identity cos^2 + sin^2 = 1..
=R^2 [(sinA^2)*1 + cosA^2)
=R^2( sinA^2 + cosA^2)
=R^2 * 1
=R^2..
hence proved.
Answered by suchindraraut17
11

\bold {x^2+y^2+z^2=r^2}

Step-by-step explanation:

Given,

x = r sin A cos B, y = r sin A sin B and z = r cos A

we have to prove,

x^2+y^2+z^2=r^2

Now,

x^2+y^2+z^2= ( r.sinA.cosB)^2 + (r.sinA.sinB)^2+(r.cosA)^2

                           = r^2[(sin^2A)(cos^2B + sin^2B) + (cos^2A)]

By using the Identity cos^2A + sin^2A = 1

                          = r^2 [(sin^2A)*1 + cos^2A)

                         = r^2( sin^2A + cos^2A)

                         = r^2 * 1

                       =r^2

\bold {x^2+y^2+z^2=r^2}

Hence proved.

*refer the givrn link for complete question:

https://brainly.in/question/4602202

Similar questions