Math, asked by Aishuachu, 1 year ago

If x=r sin A cosC, y=r sin A sin C and z=r cos A, prove that r^2=x^2+y^2+z^2.

Answers

Answered by varshith1996
6
this is the required proof
Attachments:
Answered by Anant02
12

x = r \sin(a)  \cos(c)  \:  \:  \: and \:  \: y = r \sin(a)  \sin(c)  \: and \: z = r \cos(a)  \: to \: prove \:  {r}^{2}  =  {x}^{2}  +  {y}^{2}  +  {z}^{2}  \\ taking \: r.h.s. \\  {x}^{2}  +  {y}^{2}  +  {z}^{2}  \\  =  {(r \sin(a) \cos(c) )}^{2}  +  {(r \sin(a) \sin(c) ) }^{2}  +  {(r \cos(a)) }^{2}  \\  =  {r}^{2} ( { \sin(a) }^{2}  { \cos(c) }^{2}  +  { \sin(a) }^{2}  { \sin(c) }^{2}  +  { \cos(a) }^{2}) \\   = {r}^{2} ( { \sin(a) }^{2} ( { \cos(c) }^{2}  +  { \sin(c) }^{2} ) +  { \cos(a) }^{2}  \\  =  {r}^{2} ( { \sin(a) }^{2}  +  { \cos(a) }^{2} ) \\   = {r}^{2}  \\ proved
Similar questions