If x= r sin alpha cos beta , y= r sin alpha sin beta and z=r cos alpha , then
Answers
Answered by
0
Answer:
X^2+y^2+z^2=
R^2Cos^2alphasin^2beta + r^2cos^2alphacos^2beta+ R^2sin^2 alpha
R^2[Cos^2alpha(sin^2beta+ cos^2 beta)+sin^2 alpha]
R^2[Cos^2 alpha + sin^2 alpha]=r^2
Answered by
0
Answer:
Solution
We have, x
2
+y
2
+z
2
=r
2
sin
2
αcos
2
β+r
2
sin
2
αsin
2
β+r
2
cos
2
α
=r
2
sin
2
α(cos
2
β+sin
2
β)+r
2
cos
2
α
=r
2
sin
2
α+r
2
cos
2
α
=r
2
Hence, proved.
Step-by-step explanation:
Mark me Brain List.
Similar questions