If x = r sinθ cosφ ; y= r sin θ sinφ and z = r cosθ then find
Answers
Answered by
8
Answer →
x² +y² +z² = r²
Solution →
let theta = a and fie = b
Here , putting the value of x ,y and z in LHS
→(r sina cosb)² + ( r sina.sinb)² +(r cosa)²
→r²sin²a.cos²b + r² sin²a.sin²b + r²cos²a
Here taking r²sin²a common from 1st 2 terms .
→r²sin²a ( cos²b + sin²b) + r²cos²a
As we know that sin²a + cos²a = 1
→r²sin²a (1) + r²cos²a
→r²sin²a + r²cos²a
Taking r² common
→r²( sin²a + cos²a )
→r²(1)
→r²
So, x²+y²+z² = r² .
hope it helps
Rythm14:
osum :P
Similar questions