Math, asked by ggurwindersingh5111, 1 year ago

If x = r sina cod b, y=r sin a sin b, z=r cos


a. prove that x^2 +y^2+z^2=r^2

Answers

Answered by SkyBy
19
See the solution in the attached file.
Attachments:
Answered by mysticd
3

 We\:have \: x = r sin a cos a\: --(1) \\y = r sina sin b \: ---(2) \: and \\z = r cos a\: ---(3)

 LHS =\red{ x^{2} + y^{2} + z^{2}} \\= (r sin a cos b )^{2} + ( r sin a sin b )^{2} + ( r cos a )^{2} \\= r^{2} sin^{2} a cos^{2} b + r^{2} sin^{2} a sin^{2} b + r^{2} cos^{2} a \\= r^{2} [ sin^{2} a cos^{2} b + sin^{2} a sin^{2} b +  cos^{2} a] \\= r^{2} [ sin^{2} a( cos^{2} b + sin^{2} b ) + cos^{2} a ] \\= r^{2} [ sin^{2} a\times 1 + cos^{2} a ]

 \boxed {\pink { Since, cos^{2} \theta + sin^{2} \theta = 1 }}

 = r^{2} ( sin^{2} a+ cos^{2} a )

 = r^{2} \times 1 \\=\green { r^{2}} \\= RHS

 Hence\: proved

•••♪

Similar questions