if x=r sinA cos B,y= r sin A*and ,z=r cos A..prove x²+y²+z²=r²
Answers
Appropriate Question :-
If x = r sinA cosB, y = r sinA sinB and z = r cosA, prove that
x²+y²+z²=r²
Given that,
x = r sinA cosB
y = r sinA sinB
z = r cosA
Now,
Consider, LHS
On substituting the values of x, y and z we get
We know,
So, using this, the above reduces to
Hence,
Additional Information:-
Relationship between sides and T ratios
sin θ = Opposite Side/Hypotenuse
cos θ = Adjacent Side/Hypotenuse
tan θ = Opposite Side/Adjacent Side
sec θ = Hypotenuse/Adjacent Side
cosec θ = Hypotenuse/Opposite Side
cot θ = Adjacent Side/Opposite Side
Reciprocal Identities
cosec θ = 1/sin θ
sec θ = 1/cos θ
cot θ = 1/tan θ
sin θ = 1/cosec θ
cos θ = 1/sec θ
tan θ = 1/cot θ
Co-function Identities
sin (90°−x) = cos x
cos (90°−x) = sin x
tan (90°−x) = cot x
cot (90°−x) = tan x
sec (90°−x) = cosec x
cosec (90°−x) = sec x
Fundamental Trigonometric Identities
sin²θ + cos²θ = 1
sec²θ - tan²θ = 1
cosec²θ - cot²θ = 1