Math, asked by akshayagopi560, 5 months ago

if x=r sinA cos B,y= r sin A*and ,z=r cos A..prove x²+y²+z²=r²​

Answers

Answered by mathdude500
5

Appropriate Question :-

If x = r sinA cosB, y = r sinA sinB and z = r cosA, prove that

x²+y²+z²=r²

\large\underline{\sf{Solution-}}

Given that,

x = r sinA cosB

y = r sinA sinB

z = r cosA

Now,

Consider, LHS

\rm :\longmapsto\: {x}^{2} +  {y}^{2}  +  {z}^{2}

On substituting the values of x, y and z we get

 \rm \:  =  {(rsinAcosB)}^{2} +  {(rsinAsinB)}^{2} +  {(rcosA)}^{2}

\rm \:  =  \:  \: {r}^{2} {sin}^{2}A {cos}^{2}   B + {r}^{2} {sin}^{2}A {sin}^{2}B + {r}^{2} {cos}^{2}A

\rm \:  =  \:  \: {r}^{2} {sin}^{2}A( {cos}^{2}   B +  {sin}^{2}B )+ {r}^{2} {cos}^{2}A

We know,

\boxed{ \bf{ \:  {sin}^{2}x +  {cos}^{2}x = 1}}

So, using this, the above reduces to

\rm \:  =  \:  \: {r}^{2} {sin}^{2}A(1 )+ {r}^{2} {cos}^{2}A

\rm \:  =  \:  \: {r}^{2} {sin}^{2}A+ {r}^{2} {cos}^{2}A

\rm \:  =  \:  \: {r}^{2} ({sin}^{2}A+  {cos}^{2}A)

\rm \:  =  \:  \: {r}^{2} (1)

\rm \:  =  \:  \: {r}^{2}

Hence,

\boxed{ \bf{ \: \: {x}^{2} +  {y}^{2}  +  {z}^{2}  =  {r}^{2} }}

Additional Information:-

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

Similar questions