If x =r sinA cos C, y= r sin A sin C, z=rcos A, Prove that r 2 = x 2 +y 2 +z 2
Answers
Answered by
31
r^2 = x^2 +y^2 +z^2
R.H.S= x^2 +y^2 +z^2
=r^sin^2(a)cos^2(c) + r^2sin^2(a)sin^2(c) + r^2cos^2(A)
= r^2[ sin^2(a)cos^2(c) + sin^2(a)sin^2(c) +cos^2(a) ]
=r^2[ sin^2(a)[cos^2(c) +sin^2(c)] +cos^2(a) ]
=r^2{ sin^(a)[ 1 ] + cos^2(a) }
=r^2{ sin^2(a) +cos^2(a)}
=r^2 {1 }
=r^2//
R.H.S= x^2 +y^2 +z^2
=r^sin^2(a)cos^2(c) + r^2sin^2(a)sin^2(c) + r^2cos^2(A)
= r^2[ sin^2(a)cos^2(c) + sin^2(a)sin^2(c) +cos^2(a) ]
=r^2[ sin^2(a)[cos^2(c) +sin^2(c)] +cos^2(a) ]
=r^2{ sin^(a)[ 1 ] + cos^2(a) }
=r^2{ sin^2(a) +cos^2(a)}
=r^2 {1 }
=r^2//
Similar questions