Math, asked by ucchimanshup4206, 1 month ago

If x=rcos⁡θ, y=rsin⁡θ then the value of ∂(x,y)/∂(r,θ) is

Answers

Answered by mathdude500
8

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\:x = r \: cos\theta

\rm :\longmapsto\:y = rsin\theta

Consider,

\rm :\longmapsto\:\dfrac{\partial x}{\partial r}  = cos\theta

\rm :\longmapsto\:\dfrac{\partial y}{\partial r}  = sin\theta

\rm :\longmapsto\:\dfrac{\partial x}{\partial \theta }  = - r \:  sin\theta

\rm :\longmapsto\:\dfrac{\partial y}{\partial \theta }  = r \:  cos\theta

Now, we know that

\rm :\longmapsto\:\dfrac{\partial (x,y)}{\partial (r,\theta )}

 \rm \:  =  \:  \: \begin{array}{|cc|}\sf \dfrac{\partial x}{\partial r}  &\sf \dfrac{\partial x}{\partial \theta }  \\ \\ \sf \dfrac{\partial y}{\partial r }  &\sf \dfrac{\partial y}{\partial \theta }  \\\end{array}

\rm \:  =  \:  \: \begin{array}{|cc|}\sf cos\theta  &\sf  - r \: sin\theta   \\ \sf sin\theta  &\sf r \: cos\theta  \\\end{array}

\rm \:  =  \:  \:  {rcos}^{2}\theta  +  {rsin}^{2} \theta

\rm \:  =  \:  \: r( {cos}^{2}\theta  +  {sin}^{2} \theta )

\rm \:  =  \:  \: r \times 1

\rm \:  =  \:  \: r

Hence,

 \red{\bf :\longmapsto\:\dfrac{\partial (x,y)}{\partial (r,\theta )}  \:  = \:  r}

Additional Information :-

Properties of Jacobian

 \red{\bf :\longmapsto\:\dfrac{\partial (x,y)}{\partial (r,\theta )}  \:  = \:  J}

 \red{\bf :\longmapsto\:\dfrac{\partial (r,\theta )}{\partial (x,y )}  \:  = \:  J'}

 \red{\bf :\longmapsto\: \: J J' \:  =  \: 1}

 \red{\bf :\longmapsto\: \: \dfrac{\partial (x,y)}{\partial (r,\theta )}  \times \dfrac{\partial (r,\theta )}{\partial (x,y)}  =  \: 1}

Similar questions