Math, asked by diyakhurange, 1 month ago

If x=rcosh 0, y = rsinh , then (), is equal to,​

Answers

Answered by chayeshkumar
0

Step-by-step explanation:

Given : x=rcosθy=rsinθ

r

x

=cosθ

r

y

=sinθ

cosθ=

r

x

sinθ=

r

y

θ=cos

−1

(

r

x

)θ=sin

−1

(

r

y

)

Differentiate partially w.r.t

x

and

y

∂x

∂θ

=−

1−(

r

x

)

2

1

×

r

1

∂y

∂θ

=−

1−(

r

y

)

2

1

×

r

1

=

r

2

−x

2

r

2

×

r

1

=

r

2

−y

2

r

2

×

r

1

=

r

2

−x

2

−1

=

r

2

−y

2

1

Differentiate the equation below partially again with

x

and

y

∂x

∂θ

=

r

2

−x

2

−1

∂y

∂θ

=

r

2

−y

2

1

∂x

2

2

θ

=

2

r

2

−x

2

−1

×−2x

∂y

2

2

θ

=

r

2

−y

2

1

×−2y

=

r

2

−x

2

1

=

r

2

−y

2

−1

So the given statements are :

I:

∂x

2

2

θ

+

∂y

2

2

θ

=0

r

2

−x

2

1

r

2

−y

2

1

Substitute 'x' and 'y' with rcosθ and rsinθ

r

2

−r

2

cos

2

θ

1

r

2

−r

2

sin

2

θ

1

=

r

2

(1−cos

2

θ)

1

r

2

(1−sin

2

θ)

1

=

r

sin

2

θ

1

r

cos

2

θ

1

=

rsinθ

1

rcosθ

1

=0

Similar questions