Math, asked by kcjai2005, 10 months ago

if x=root 3/2 find the value of 1+x/1+root1+x

Answers

Answered by Oliffe
0

Answer:

2+root3

Step-by-step explanation:

x/1 = root3/2

root1 = 1

1+x/1+root1+x

= 1+root3/2+1+root3/2

= 2+2root3/2

= 2+ root3

Answered by Salmonpanna2022
1

Step-by-step explanation:

 \bf \underline{Given-} \\

 \rm{x =  \frac{ \sqrt{3} }{2} } \\

 \bf \underline{To \: find-} \\

\mathsf{ \frac{1 + x}{1 +  \sqrt{1 + x} }  +  \frac{1 - x}{1 - \sqrt{1 - x} }  = ?}  \\

 \bf \underline{Solution-} \\

 \rm{ \sqrt{1 + x} } \\  =  \sqrt{1 +  \frac{ \sqrt{3} }{2} }  \\   = \sqrt{ \frac{ 2 +  \sqrt{3} }{2} }  \\   = \sqrt{ \frac{4 + 2 \sqrt{3} }{4} }  \\

 =  \sqrt{ \frac{3 + 1 + 2 \times  \sqrt{3}   \times 1}{4} }  \\

 =  \sqrt{ \frac{( \sqrt{3}  + 1 {)}^{2} }{4} }  \\

 =  \frac{ \sqrt{3} + 1 }{2}  \\

\textsf{Similarly,} \\

\rm{ \sqrt{1 - x} } \\

\rm{ =  \frac{ \sqrt{3}  - 1}{2} } \\

 \rm{\therefore \: \frac{1 + x}{1 +  \sqrt{1 + x} }   +  \frac{1 - x}{1 -  \sqrt{1 - x} } } \\

 \rm{= \frac{1 +  \frac{ \sqrt{3} }{2} }{1  +  \frac{ \sqrt{3} + 1 }{2} }   +  \frac{ 1 - \frac{ \sqrt{3} }{2} }{1 -  \bigg( \frac{ \sqrt{3} - 1 }{2} \bigg) }  } \\

\rm{= \frac{2 +  \sqrt{3} }{2 +  \sqrt{3} + 1 } +  \frac{2 -  \sqrt{3} }{2 - ( \sqrt{3}  - 1)}  } \\

\rm{=  \frac{2 +  \sqrt{3} }{3 +  \sqrt{3} }  +  \frac{2 -  \sqrt{3} }{3 -  \sqrt{3} } } \\

\rm{=  \frac{2 +  \sqrt{3} }{3 +  \sqrt{3} }  \times  \frac{3 -  \sqrt{3} }{3 -  \sqrt{3} } +  \frac{2 -  \sqrt{3} }{3 -  \sqrt{3} } \times  \frac{3 +  \sqrt{3} }{3 +  \sqrt{3} }   } \\

 \rm{=  \frac{(2 +  \sqrt{3} )(3 -  \sqrt{3} ) + (2 -  \sqrt{3})(3 +  \sqrt{3}  )}{(3 {)}^{2}  - ( \sqrt{3}  {)}^{2} } } \\

\rm{= \frac{6 - 2 \sqrt{3} + 3 \sqrt{3}   - 3 + 6 + 2 \sqrt{3} - 3 \sqrt{3}   - 3}{9 - 3}  } \\

\rm{= \frac{12 - 6}{6}  } \\

\rm{= \frac{6}{6} } \\

\rm{= 1} \\

\mathsf{\underline{Hence, the \: value \: of \:  \frac{1 + x}{1 +  \sqrt{1 + x} }  +  \frac{1 - x}{1 - \sqrt{1 - x} }  \: is \: 1}}  \\

Similar questions