Math, asked by prakashdash08620, 12 hours ago

If x = root 3 + root 2 / root 3 - root 2 , find x^4 + 1 / x^4​

Answers

Answered by riya15042006
3

x \:  =   \frac{ \sqrt{3} +  \sqrt{2}  }{ \sqrt{3} -  \sqrt{2}  }

 -  >  \frac{( \sqrt{3} +  \sqrt{2})( \sqrt{3}  +  \sqrt{2}) }{( \sqrt{3}  -  \sqrt{2} )( \sqrt{3} +  \sqrt{2})}

 -  >  \frac{3 +  \sqrt{6}  +  \sqrt{6} + 2 }{ {( \sqrt{3} )}^{2}  -  {( \sqrt{2}) }^{2} }

 -  >  \frac{5 + 2 \sqrt{6} }{3 - 2}

 -  >  \frac{5 + 2 \sqrt{6} }{1}

 -  > x = 5 + 2 \sqrt{6}  -  -  > 1

Now ,

 \frac{1}{x}  =  \frac{1}{5 + 2 \sqrt{6} } (from \: 1)

 -  >  \frac{1 \times 5 - 2 \sqrt{6} }{(5 + 2 \sqrt{6)(5 - 2 \sqrt{6} )} }

 -  >  \frac{5 - 2 \sqrt{6} }{ {(5) }^{2}  -  {(2 \sqrt{6} )}^{2} }

 -  >  \frac{5 - 2 \sqrt{6} }{25 - 24}

 -  >  \frac{5 - 2 \sqrt{6} }{1}

 -  >  \frac{1}{x}  = 5 - 2 \sqrt{6}  -  -  > 2

Now ,

x +  \frac{1}{x}  = 5 + 2 \sqrt{6} + 5 - 2 \sqrt{6}

 -  > x +  \frac{1}{x}  = 10

Please refer the above attachment fir the further answer..

The last part of the answer is in the above attachement....

I hope it helps u dear friend ^_^♡♡

Attachments:
Similar questions