Math, asked by Aakashsc, 1 year ago

if x=root 3 + root 3\ root 3 - root 2 and y=root 3- root 2\ root 3+root 2 find the value of x square + y square + xy

Attachments:

Answers

Answered by Anonymous
5
hope this helps you ☺
Attachments:

DaIncredible: great bhai ^_^
Anonymous: thanks ☺
Answered by DaIncredible
3
Heya there !!!
Here is the answer you were looking for:

Identities used :

 {(x  -  y)}^{2}  =  {x}^{2}  +  {y}^{2}  - 2xy \\  {(x  +  y)}^{2}  =  {x}^{2}  +  {y}^{2}  + 2xy \\ (x + y)(x - y) =  {x}^{2}  -  {y}^{2}

x =  \frac{ \sqrt{3}  +  \sqrt{2} }{ \sqrt{3}   -   \sqrt{2} }  \\

On rationalizing the denominator we get,

x =  \frac{ \sqrt{3} +  \sqrt{2}  }{ \sqrt{3}  -  \sqrt{2} }  \times  \frac{ \sqrt{3} +  \sqrt{2}  }{ \sqrt{3}  +  \sqrt{2} }  \\  \\ x =  \frac{ {( \sqrt{3} )}^{2} +  {( \sqrt{2}) }^{2}  +  2( \sqrt{3})( \sqrt{2}  )}{ {( \sqrt{3} )}^{2} -  {( \sqrt{2} )}^{2}  }  \\  \\ x =  \frac{3 + 2 + 2 \sqrt{6} }{3 - 2}  \\  \\ x = 5 + 2 \sqrt{6}

y =  \frac{ \sqrt{3}  -  \sqrt{2} }{ \sqrt{3}  +  \sqrt{2} }  \\

On rationalizing the denominator we get,

y =  \frac{ \sqrt{3}  -  \sqrt{2}  }{ \sqrt{3} +  \sqrt{2}  }  \times  \frac{ \sqrt{3}  -  \sqrt{2} }{ \sqrt{3}  -  \sqrt{2} }  \\  \\ y =  \frac{ {( \sqrt{3} )}^{2} +  {( \sqrt{2}) }^{2}   - 2( \sqrt{3})( \sqrt{2} ) }{ {( \sqrt{3} )}^{2} -  {( \sqrt{2}) }^{2}  }  \\  \\ y =  \frac{3 + 2 - 2 \sqrt{6} }{3 - 2}  \\  \\ y = 5 - 2 \sqrt{6}

 {x}^{2}  =  {(5 + 2 \sqrt{6}) }^{2}  \\  \\  {x}^{2}  = {(5)}^{2}  +  {(2 \sqrt{6} )}^{2}  + 2(5)(2 \sqrt{6} ) \\  \\  {x}^{2}  = 25 + 24 + 20 \sqrt{6}  \\  \\  {x}^{2}  = 49 + 20 \sqrt{6}  \\  \\  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  \\  \\  {y}^{2}  =  {(5 - 2 \sqrt{6}) }^{2}  \\  \\  {y}^{2}  =  {(5)}^{2}  +  {(2 \sqrt{6}) }^{2}  - 2(5)(2 \sqrt{6} ) \\  \\  {y}^{2}  = 25 + 24 - 20 \sqrt{6}  \\  \\  {y}^{2}  = 49 - 20 \sqrt{6}

Now putting the values in x^2 + y^2 + xy

 = (49 + 20 \sqrt{6} ) + (49 - 20 \sqrt{6} ) + (5 + 2 \sqrt{6} )(5 -  2\sqrt{6} ) \\  \\  = 49 + 20 \sqrt{6}  + 49 - 20 \sqrt{6}  + ( {(5)}^{2}  -  {(2 \sqrt{6}) }^{2} ) \\  \\  = 98 + (25 - 24) \\  \\  = 98 + (1) \\  \\  = 99

Hope you understood !!!

If you have any doubt regarding to my answer, then feel free to ask in the comment section ^_^

@Mahak24

Thanks...
☺☺
Similar questions