if x=root 3+root2 divided by root3-root2 and y=root3-root2 divided by root3+root2 then find the value of x square+ysquare
Answers
Answered by
57
FIRST OF ALL, WE HAVE TO RATIONALISE "x" AND "y".
WE GET,
SIMILARLY,
NOW, WE CAN PROCEED AS UNDER :
x² + y²
= (3+2√6+2)² + (3-2√6+2)²
= (5+2√6)² + (5-2√6)²
= 25 + 20√6 + 24 + 25 - 20√6 + 24
= 98 [REQUIRED ANSWER]
danny30:
but how do yo get 20root6
Answered by
0
FIRST OF ALL, WE HAVE TO RATIONALISE "x" AND "y".
WE GET,
x = \frac{( \sqrt{3 } + \sqrt{2}) ^{2} }{( \sqrt{3} - \sqrt{2} )( \sqrt{3} + \sqrt{2} ) }x=
(
3
−
2
)(
3
+
2
)
(
3
+
2
)
2
= 3 \: + \: 2 \sqrt{6 \: } \: + \: 2=3+2
6
+2
SIMILARLY,
y = \frac{ {( \sqrt{3} - \sqrt{2} ) }^{2} }{( \sqrt{3} + \sqrt{2)}( \sqrt{3 } - \sqrt{2)} }y=
(
3
+
2)
(
3
−
2)
(
3
−
2
)
2
= 3 \: - \: 2 \sqrt{6 \: } + \: 2=3−2
6
+2
NOW, WE CAN PROCEED AS UNDER :
x² + y²
= (3+2√6+2)² + (3-2√6+2)²
= (5+2√6)² + (5-2√6)²
= 25 + 20√6 + 24 + 25 - 20√6 + 24
= 98 [REQUIRED ANSWER]
Similar questions