Math, asked by Sapna54461, 1 year ago

If x=root 3+root2/root3-root2 and y=root3-root2/root3+2 ,find the value of(x+y)square

Answers

Answered by Sharad001
95

 \underline{ \large\bf{ question}} : -  \\   \sf{ if \:  x =  \frac{ \sqrt{3} +  \sqrt{2}  }{ \sqrt{3}  -  \sqrt{2} }  \: and \: y =  \frac{ \sqrt{3}  -  \sqrt{2} }{ \sqrt{3}  +  \sqrt{2} } } \\   \sf{find \:  {(x + y)}^{2} } \\  \\  \large \:   \underline{\bf{answer}} :  -  \\ \implies \:   \boxed{ \bf{{(x + y)}^{2}  = 100}} \:   \\    \large \bf{ \underline{explanation \: }} : -

Now take that which we need ,

 \rightarrow \: \sf{  {(x + y)}^{2} } \\  \\  \rightarrow \sf{ { \bigg( \frac{ \sqrt{3}  +  \sqrt{2} }{ \sqrt{3}  -  \sqrt{2} } +  \frac{ \sqrt{3}  -  \sqrt{2} }{ \sqrt{3}  +  \sqrt{2} }  \bigg) }^{2} } \\  \\  \rightarrow \sf  { \bigg( \frac{ {( \sqrt{3} +  \sqrt{2}  )}^{2} +  {( \sqrt{3}  -  \sqrt{2} )}^{2}  }{( \sqrt{3} +  \sqrt{2})( \sqrt{3}  -  \sqrt{2} )  }  \bigg)}^{2}  \\  \\  \because \sf{ (a + b)(a - b) =  {a}^{2}  -  {b}^{2} } \\  \therefore \\  \\  \rightarrow \sf  { \bigg( \frac{3 + 2 + 2 \sqrt{6}  + 3 + 2 - 2 \sqrt{6} }{3 - 2} \bigg) }^{2}  \\  \\  \rightarrow \:  { \bigg( \frac{10}{1}  \bigg)}^{2}  = 100 \\  \\ \sf{ hence} \\  \\  \implies \:   \boxed{ \bf{{(x + y)}^{2}  = 100}}

\_________________/

Similar questions