if x=root 3+root2/root3-root2 then find the value of x2
Answers
Answer:
Value of x² + y² + xy is 99.
Step-by-step explanation:
Given:
x=\frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}\:\:and\:\:y=\frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}
To find: value of x² + y² + xy
First we find,
xy=\frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}\times\frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}
=\frac{(\sqrt{3}-\sqrt{2})(\sqrt{3}+\sqrt{2})}{(\sqrt{3}+\sqrt{2})(\sqrt{3}-\sqrt{2})}
=\frac{(\sqrt{3})^2-(\sqrt{2})^2}{(\sqrt{3})^2-(\sqrt{2})^2}
=\frac{3-2}{3-2}
= 1
x^2=\frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}\times\frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}
=\frac{(\sqrt{3}-\sqrt{2})^2}{(\sqrt{3}+\sqrt{2})^2}
=\frac{3+2-2\sqrt{3}\sqrt{2}}{3+2+2\sqrt{3}\sqrt{2}}
=\frac{5-2\sqrt{6}}{5+2\sqrt{6}}
=\frac{5-2\sqrt{6}}{5+2\sqrt{6}}\times\frac{5-2\sqrt{6}}{5-2\sqrt{6}}
=\frac{(5-2\sqrt{6})^2}{(5+2\sqrt{6})(5-2\sqrt{6})}
=\frac{25+24-20\sqrt{6}}{25-24}
= 49 - 20√6
y^2=\frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}\times\frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}
=\frac{(\sqrt{3}+\sqrt{2})^2}{(\sqrt{3}-\sqrt{2})^2}
=\frac{3+2+2\sqrt{3}\sqrt{2}}{3+2-2\sqrt{3}\sqrt{2}}
=\frac{5+2\sqrt{6}}{5-2\sqrt{6}}
=\frac{5+2\sqrt{6}}{5-2\sqrt{6}}\times\frac{5+2\sqrt{6}}{5+2\sqrt{6}}
=\frac{(5+2\sqrt{6})^2}{(5+2\sqrt{6})(5-2\sqrt{6})}
=\frac{25+24+20\sqrt{6}}{25-24}
= 49 + 20√6
Now,
x² + y² + xy = 49 - 20√6 + 49 + 20√6 + 1 = 49 + 49 + 1 = 99
Therefore, Value of x² + y² + xy is 99.