If x= root 5+1/root5-1 and y=root5-1/root5+1, find x^2+y^2+xy
Answers
Answer:
See attachments.
Step-by-step explanation:
Because your note is not clear, there are two scenarios:
1). If x = root(5+1) / root(5-1) and
y = root(5-1) / root(5+1) ,
then answer is 3
2). If x = [(root5) + 1] / [(root5) - 1] and
y = [(root5) - 1] / [(root5) + 1] ,
then answer is 8 .
Answer:
x^2+y^2+xy
=(√5+1/√5-1)^2 + (√5-1/√5+1)^2 +
(√5+1/√5-1)(√5-1/√5+1)
={(√5+1)^2}/{(√5-1)^2} + {(√5-1)^2}/{(√5+1)^2} + (1)
={5+1+2√5}/{5+1-2√5} +{5+1-2√5}/{5+1+2√5} + (1)
={6+2√5}/{6-2√5} +{6-2√5}/{6+2√5} + (1)
(adding 1st two terms)
=[{6+2√5}^2+{6-2√5}^2]/[{6-2√5}×{6+2√5}] +(1)
=[{6^2+(2√5)^2+(2×6×2√5)+
6^2+(2√5)^2-(2×6×2√5)}]/[6^2-(2√5)^2] +(1)
=[6^2+(2√5)^2+6^2+(2√5)^2]/[36-20] +(1)
=[36+20+36+20]/[16] +(1)
=[112]/[16] +1
=[ 7 ] + [1]
= 8
(please mark as brainliest answer)