if x=root 5-2 by root5+ 2 and y=root5 + 2 by root 5- 2, find the value of x square+xy+y square
Answers
Answered by
7
Answer:
X=√5-√2/√5+√2
=(√5-√2)(√5-√2)/(√5+√2)(√5-√2)
={(√5)²-2.√5.√2+(√2)²}/{(√5)²-(√2)²}
=(5-2√10+2)/(5-2)
=(7-2√10)/3
y=√5+√2/√5-√2
=(√5+√2)(√5+√2)/(√5-√2)(√5+√2)
={(√5)²+2.√5.√2+(√2)²}/{(√5)²-(√2)²}
=(5+2√10+2)/(5-2)
=(7+2√10)/3
Now, x²+xy+y²
=x²+y²+xy
={(x+y)²-2xy}+xy
=(x+y)²-xy
={(7-2√10)/3+(7+2√10)/3}²-{(7-2√10)/3×(7+2√10)/3}
={(7-2√10+7+2√10)/3}²-(7-2√10)/(7+2√10)
=(14/3)²-{(7-2√10)(7-2√10)/(7+2√10)(7-2√10)}
=196/9-(7-2√10)²/{(7)²-(2√10)²}
=196/9-(49-2.7.2√10+40)/(49-40)
=196/9-(9-28√10)/9
=(196-9+28√10)/9
=(187+28√10)/9
Answered by
1
Answer:
It was not correct answer
97 रूट 5 was right
Similar questions