Math, asked by advbinoyramv, 8 months ago

if x= root 5 -2, find the value of (x-1/x )^3

Answers

Answered by diwanruhi12
1

Answer:

\frac{32\sqrt{5} + 72}{17\sqrt{5} + 38}

Step-by-step explanation:

x = \sqrt{5} - 2

Substituting value of x in (\frac{x - 1}{x}) ^{3}

(\frac{\sqrt{5} - 2 - 1 }{\sqrt{5} - 2 }) ^{3}

= (\frac{\sqrt{5} - 3 }{\sqrt{5} - 2 }) ^{3}

= \frac{(\sqrt{5} - 3) ^{3} }{(\sqrt{5} - 2)^{3} }

= \frac{(\sqrt{5}) ^{3} - (-3)^{3} - 3(\sqrt{5})(-3)(\sqrt{5} + 3)    }{(\sqrt{5}) ^{3} - (-2)^{3} - 3(\sqrt{5})(-2)(\sqrt{5} + 2)}

= \frac{5\sqrt{5} - (-27) + 9\sqrt{5}(\sqrt{5} + 3)}{5\sqrt{5} - (-8) + 6\sqrt{5}(\sqrt{5} + 2)}

= \frac{5\sqrt{5} + 27 + 45 + 27\sqrt{5}}{5\sqrt{5} + 8 + 30 + 12\sqrt{5}}

= \frac{32\sqrt{5} + 72}{17\sqrt{5} + 38}  

Hope it helped!!!

Please mark as brainliest!!!

Similar questions