If x = root 5 - 2 / root 5 + 2
Find : x square + 1 / x square
Answers
Answered by
1
Answer:
Heya ✋
Let see your answer !!!
Given that
x = 2 + √5
x^2 + 1/x^2 = ?
Solution
1/x = 1/2 + √5
By rationalization
= 1 × (2 - √5)/(2 + √5) × (2 - √5)
= 2 - √5/(2)^2 - (√5)^2
= 2 - √5/4 - 5
= 2 -√5/-1
= -2 + √5
Therefore ,
x^2 + 1/x^2
= (2 + √5)^2 + (-2 + √5)^2
= (2)^2 + (√5)^2 + 2 × 2 × √5 + (-2)^2 + (√5)^2 + 2 × (-2) × √5
= 4 + 5 + 4√5 + 4 + 5 - 4√5
= 9 + 4√5 + 9 - 4√5
= 18
Thanks :)
Answered by
2
Step-by-step explanation:
step 1
x= root 5-2 /root 5 +2
rationalise the denominator
step 2
x= root 5-2/ root 5+2 ×root 5-2 / root 5-2
×=(root 5-2)^2/( root 5+2)(root 5 -2)
step 3
x= root 5^2+2^2-2×root 5 ×2 /(root5^2)-(2^2)
x= 5+4 - 4 root 5 /5-4
x=9-4 root 5
1/x = 1/9-4 root 5
step 4
x^2+1/x^2=9^2-4 root 5^2 +1/9-4root5^2
161+1/81-80
161+0
161
hope it helps u
Similar questions