Math, asked by srishtisudharsan, 11 months ago


If x=root 5 + root 3 / root 5- root 3
and y= root 5- root 3/ root 5+ root 3
, find the value of x+y+xy.

I will give 100 points answer fast

Answers

Answered by prakashdash08620
19

Answer:

HOPE THIS WILL HELP YOU

Attachments:
Answered by rinayjainsl
2

Answer:

The value of the given expression is

x + y + xy =  \frac{39}{11}

Step-by-step explanation:

The given values of variables are

x =  \frac{ \sqrt{5} +  \sqrt{3}  }{ \sqrt{5}  -  \sqrt{3} }

and

y =  \frac{ \sqrt{5} -  \sqrt{3}  }{ \sqrt{5} +  \sqrt{3}  }

We are required to find the value of x+y+xy.We shall do it by parts

xy = \frac{ \sqrt{5} +  \sqrt{3}  }{ \sqrt{5}  -  \sqrt{3} }  \times \frac{ \sqrt{5}  -   \sqrt{3}  }{ \sqrt{5}   +  \sqrt{3} }  = 1

And the remaining expression is

x + y = \frac{ \sqrt{5} +  \sqrt{3}  }{ \sqrt{5}  -  \sqrt{3} }  + \frac{ \sqrt{5}  - \sqrt{3}  }{ \sqrt{5}   +  \sqrt{3} }  \\  =  \frac{(5 +  \sqrt{3} ) {}^{2}  + (5 -  \sqrt{3} ) {}^{2} }{(5 +  \sqrt{3})(5 -  \sqrt{3})  }  \\  =  \frac{2(5 {}^{2} + 3) }{5 {}^{2} - 3 }  =  \frac{2 \times 28}{22}  =  \frac{28}{11}

Therefore,the value of the final expression is

x + y + xy =  \frac{28}{11}  + 1 =  \frac{39}{11}

#SPJ2

Similar questions