Math, asked by shariqsheikh, 1 year ago

if x = root 5 + root 3 whole upon root 5 minus root 3 and Y equal root 5 minus root 3 whole upon root 5 + root 3 then X + Y + xy =​

Answers

Answered by sprao534
3

Please see the attachment

Attachments:

karthikesh05: excellent but I got the answer before u
shariqsheikh: how you got xy =1
Answered by mitajoshi11051976
6
if
x =    \frac{ \sqrt{5 }  +  \sqrt{3} }{ \sqrt{5}  -   \sqrt{3}  }  \\
if
y =  \frac{ \sqrt{5} -  \sqrt{3}  }{ \sqrt{5}   +   \sqrt{3}  }
then
x + y + xy =  ( \:  \:  \: )
put the value of x and y
 = x + y + xy \\  =  \frac{ \sqrt{5} +  \sqrt{3}  }{ \sqrt{5}  -  \sqrt{3} }  +  \frac{ \sqrt{5}  -  \sqrt{3} }{ \sqrt{5}  +  \sqrt{3} }  +  \frac{ \sqrt{5}  +  \sqrt{3} }{ \sqrt{5}  -  \sqrt{3} }  \times  \frac{ \sqrt{5} -  \sqrt{3}  }{ \sqrt{5} +  \sqrt{3}  }
Connection of demonemeter and x×y=1
 =  \frac{ \sqrt{5}  + \sqrt{3}  }{ \sqrt{5}  -  \sqrt{3} }  \times  \frac{ \sqrt{5} -  \sqrt{3}  }{ \sqrt{5}  -  \sqrt{3} }  +  \frac{ \sqrt{5 } -  \sqrt{3}  }{ \sqrt{5}  +  \sqrt{3} }  \times  \frac{ \sqrt{5}  +  \sqrt{3} }{ \sqrt{5}  +  \sqrt{3} }  \\  =   \frac{5 - 3}{ {( \sqrt{5}  -  \sqrt{3)} }^{2} }  +  \frac{5 - 3}{ {( \sqrt{5}  +  \sqrt{3)} }^{2} }  \\  =  \frac{2}{5 - 2( \sqrt{5)} ( \sqrt{3)}   +3}  +  \frac{2}{5 +2( \sqrt{5)}( \sqrt{3)} + 3  }  \\  =  \frac{2}{8 - 2 \sqrt{15} }  +  \frac{2}{8   + 2\sqrt{15} }  \\  =  \frac{4}{6 \sqrt{15} }
Similar questions