if x=root 5+root3/root5-root3 and y=root5-root3/root5+root3 then find x²+y²
Answers
Answered by
16
given
now rationalise it after rationalise the no will be x = 8+2 root 15÷2.
now given y =
now also rationalise it after rationalise the no will be y= 8-2root15÷2.
now find x+y = 8.
now (x+y)^2= x^2+y^2+2.x.y.
after solve it the answer will be 62.
Answered by
22
Answer:
Step-by-step explanation:
x =√5 +√3/√5 -√3
Rationalize the denominator and you will get
x = 8 + 2√15 /2
x = 2 ( 4 +√15 ) /2
x = 4+√15
Square on both sides
x² = 4² + √15² + 2( 4) (√15)
x² = 16+15 + 8√15
x²= 31 + 8√15
Since y = √5+√3/ √5 -√3
Rationalize the denominator and you will get
y = 5+3-2√15 /2
y = 8 -2√15 /2
y= 2 (4 -√15 ) /2
y = 4 - √15
square on both sides
y² = 4² + √15² - 2 (4)(√15)
y² = 16+15 - 8√15
y²= 31 - 8√15
THEN
x² +y² =31 +8√15 +31-8√15
= 31 +31 = 62
Similar questions