Math, asked by Shivaninain19971, 10 months ago

if x=root 6+root 5 ,then the value of x^2+1/x^2
(a) 2 root 6
(b) 2 root 5
(c) 24
(d) 22​

Answers

Answered by shailendrachoubay216
14

Answer:

The answer is d.) 22

Step-by-step explanation:

It is given that x = \sqrt{6} + \sqrt{5}

We have to find the value of x^2 + \frac{1}{x^2}

Substituting the value of x in the equation given above we get

(\sqrt{6} +\sqrt{5} )^2 + \frac{1}{(\sqrt{6} +\sqrt{5} )^2}

= (6 + 5 + 2\sqrt{30}) + \frac{1}{(6 + 5 + 2\sqrt{30})}

= (11 + 2\sqrt{30} ) + \frac{1}{11 + 2\sqrt{30} }      ....   (i)

We can simplify the expression by multiplying the numerator and denominator of the second term by the conjugate of its denominator which is 11 - 2\sqrt{30}.

The expression in (i) simplifies to

{(11 + 2\sqrt{30}) + \frac{(11 - 2\sqrt{30})}{(11 + 2\sqrt{30})(11 - 2\sqrt{30})}

= (11 + 2\sqrt{30}) + \frac{(11 - 2\sqrt{30})}{121 -120}     ..... (ii) we get this from the algebraic formula that          

                                                       (a + b)(a - b)  = a^2 - b^2

The expression in (ii)  simplifies to

(11 + 2\sqrt{30})  + (11 - 2\sqrt{30})

= 22

The answer is d.) 22

Similar questions