Math, asked by jayagedar7799, 10 months ago

If x=root 7+root6 and y=root7-root6÷root7+root6 find x+y

Answers

Answered by ItzArchimedes
35

GIVEN:

  • x = √7 + √6
  • y = √7 - √6/√7 + √6

TO FIND:

  • x + y = ?

SOLUTION:

y = √7 + √6/√7 - √6

Rationalising the denominator

y = (√7 + √6)(√7 + √6)/(√7 + √6)(√7 - √6)

Using

(a + b)² = a² + 2ab + b²

(a + b)(a - b) = a² - b²

y = (√7)² + 2(√7)(√6) + (√6)²/(√7)² - (√6)²

y = 13 + 2√42/7 - 6

y = 13 + 2√42

Finding x + y

→ √7 + √6 + 13 + 2√42

Hence, x + y = 7 + 6 + 13 + 242

Answered by Anonymous
9

{\underline{\huge{\mathbf{\color{pink}{♡ heya \:dost ♡}}}}}

__________________❤

Given :-

x = \sqrt{7} + \sqrt{6}

y =  \sqrt{7 }  -  \sqrt{6}  \div  \sqrt{7}  +  \sqrt{6}

To find :-

  • X + Y

Step by step explanation

  • rationalize y

  1. y =  \frac{\sqrt{7}-\sqrt{6}}{\sqrt{7}+\sqrt{6}}

multiplying numerator and denominator by same no.

y =  \frac{\sqrt{7}-\sqrt{6}}{\sqrt{7}+\sqrt{6}} *  \frac{\sqrt{7}-\sqrt{6}}{\sqrt{7}-\sqrt{6}}

 y = \frac {(\sqrt7-\sqrt6)^2}{\sqrt7^2 - \sqrt6^2}

 y = \frac{7 + 6 - 2 * \sqrt 7 * \sqrt6}{1}

 y = 13 - 2\sqrt{42}

  • putting values

x + y = \sqrt 7 + \sqrt 6 + 13 - 2\sqrt{42}

Answer :-

\sqrt 7 + \sqrt 6 + 13 - 2\sqrt{42}

_________________❤

{\underline{\huge{\mathbf{\color{pink}{♡ thank\:you ♡}}}}}

Similar questions