Math, asked by arnavbhutani31pb6h4k, 1 year ago

If x=Root of 3-2root2 find x+1/x and x square +1/x square

Answers

Answered by LovelyG
6

Solution:

Given that ;

x = √3 - 2√2

Find the value of 1/x.

\implies \sf   \frac{1}{x}  =  \frac{1}{ \sqrt{3} - 2 \sqrt{2}  }  \\  \\ \implies \sf   \frac{1}{x}  =  \frac{1}{3 - 2 \sqrt{2} }  \times  \frac{ \sqrt{3}  + 2 \sqrt{2} }{ \sqrt{3}  + 2 \sqrt{2} }  \\  \\ \implies \sf   \frac{1}{x}  =  \frac{ \sqrt{3}  + 2 \sqrt{2} }{( \sqrt{3}) {}^{2} - (2 \sqrt{2}) {}^{2} }  \\  \\ \implies \sf   \frac{1}{x}  =  \frac{ \sqrt{3} + 2 \sqrt{2}  }{3 - 8}  \\  \\ \implies \sf   \frac{1}{x}  =  \frac{ \sqrt{3} + 2 \sqrt{2}  }{ - 5}  \\  \\ \implies \sf   \frac{1}{x}  =   \frac{2 \sqrt{2} -  \sqrt{3}  }{5}

Now, find x + (1/x),

\implies \sf  x +  \frac{1}{x}  =  \sqrt{3}  - 2 \sqrt{2}  +  \frac{2 \sqrt{2} -  \sqrt{3}  }{5}  \\  \\ \implies \sf x +   \frac{1}{x}  =  \frac{5 \sqrt{3} - 10 \sqrt{2} + 2 \sqrt{2}  -  \sqrt{3} }{5}  \\  \\ \implies \sf  x +  \frac{1}{x}  =  \frac{4 \sqrt{3}  -   8 \sqrt{2}  }{5}

Squaring both sides ;

\implies \sf (x + \frac{1}{x}) {}^{2} = \frac{(4 \sqrt{3} - 8 \sqrt{2}) {}^{2}  }{(5)^{2} }  \\  \\ \implies \sf    {x}^{2}  + \frac{1}{ {x}^{2} } + 2 =  \frac{48 + 128 - 64 \sqrt{6} }{25}  \\  \\ \implies \sf   {x}^{2}  + \frac{1}{ {x}^{2} }  =  \frac{176 - 64 \sqrt{6} }{25}  - 2 \\  \\ \implies \sf   {x}^{2}  + \frac{1}{ {x}^{2} }  = \frac{176 - 64 \sqrt{6} - 50 } {25}  \\  \\ \implies \sf   {x}^{2}  + \frac{1}{ {x}^{2} }  = \frac{126 - 64 \sqrt{6} }{25}

Similar questions