Math, asked by anicejoseph07, 1 month ago

if x = root2 - 1, find the value of x+1/x

Answers

Answered by megh79no
1

Step-by-step explanation:

The value of x is given to be : x = √2 + 1

Now, we need to find the value of the given expression :

x+\frac{1}{x}x+x1

The value of the required expression can be found easily by substituting the value of x = √2 + 1 in the expression

So, The value is :

\begin{gathered}=x+\frac{1}{x}\\\\=(\sqrt{2}+1)+\frac{1}{(\sqrt{2}+1)}\\\\= \frac{(\sqrt{2}+1)^2+1}{\sqrt{2}+1}\\\\ =\frac{2+1+2 \sqrt{2}+1}{\sqrt{2}+1}\\\\=\frac{4+2\sqrt{2}}{\sqrt{2}+1}\\\\=2.83\end{gathered}=x+x1=(2+1)+(2+1)1=2+1(2+1)2+1=2+12+1+22+1=2+14+22=2.83

Answered by Salmonpanna2022
1

Step-by-step explanation:

 \bf \underline{Given-} \\

  \sf{x =  \sqrt{2}  - 1} \\

 \bf \underline{To\: find-} \\

 \sf{the \: value \: of \: x +  \frac{1}{x}  =  \: ?}  \\

 \bf \underline{Solution-} \\

\textsf{We have}\\

  \sf{x =  \sqrt{2}  - 1} \\

 \sf{ \therefore \:  \frac{1}{x}  =  \frac{1}{ \sqrt{2} - 1 } } \\

\textsf{The denominator is √2 - 1.}\\

\textsf{We know that,}\\

\textsf{Rationalising factor of √a - b = √a + b. }\\

\textsf{So, the rationalising factor of √2 - 1 = √2 + 1.}\\

\textsf{So, rationalising the denominator them}\\

 \sf{ \:  \:  = \frac{1}{ \sqrt{2}  - 1}   \times  \frac{ \sqrt{2} + 1 }{ \sqrt{2}   + 1} } \\

 \sf{ \:  \:  =  \frac{1( \sqrt{2}   +  1)}{( \sqrt{2} - 1)( \sqrt{2} + 1)  } } \\

\textsf{Now, comparing the denominator with (a-b)(a+b), we get}\\

\textsf{\: \: \: a = √2 and b = 1.}

\textsf{Using identity (a-b)+a+b) = a²-b², we have}\\

 \sf{ \:  \:  =  \frac{ \sqrt{2} + 1 }{( \sqrt{2} {)}^{2}  - (1 {)}^{2}  } } \\

 \sf{ \:  \:  =  \frac{ \sqrt{2}  + 1}{2 - 1} } \\

 \sf{ \:  \:  = \frac{ \sqrt{2}   + 1}{1}  } \\

 \sf{ \:  \: \frac{1}{x}  =  \sqrt{2} + 1 } \\

\textsf{Now, adding both values x and 1/x, we get}\\

 \sf \therefore \: x +  \frac{1}{x}  = (\sqrt{2}    - 1 )+ ( \sqrt{2}  + 1 )\\

 \sf \: x +  \frac{1}{x}  = \sqrt{2}   \cancel{  - 1} + \sqrt{2}   \cancel{+ 1 }\\  \\

\sf \: x +  \frac{1}{x}  = \sqrt{2}  +  \sqrt{2}  \\

\sf \: x +  \frac{1}{x}  =2 \sqrt{2}  \\

 \bf \underline{Hence, the\: value\: of \: x +  \frac{1}{x}  \: is \:2 \sqrt{2} . } \\

Similar questions