Math, asked by shilpimehrotra85, 12 hours ago

If x= root2 -1, find the value of x+ 1/x​

Answers

Answered by aanupriya955
1

Answer:

1/x=√2+1 because x and 1/x are reciprocals of each other and the reciprocal of √2-1 is √2+1

here is the work...

1/x=1/(√2-1)

rationalize the denominator

1(√2+1)/(√2-1)(√2+1)

(√2+1)/(2-√2+√2-1)

(√2+1)/(2+0-1)

(√2+1)/1

√2+1

1/x=√2+1

Answered by Salmonpanna2022
1

Step-by-step explanation:

 \bf \underline{Given-} \\

  \sf{x =  \sqrt{2}  - 1} \\

 \bf \underline{To\: find-} \\

 \sf{the \: value \: of \: x +  \frac{1}{x}  =  \: ?}  \\

 \bf \underline{Solution-} \\

\textsf{We have}\\

  \sf{x =  \sqrt{2}  - 1} \\

 \sf{ \therefore \:  \frac{1}{x}  =  \frac{1}{ \sqrt{2} - 1 } } \\

\textsf{The denominator is √2 - 1.}\\

\textsf{We know that,}\\

\textsf{Rationalising factor of √a - b = √a + b. }\\

\textsf{So, the rationalising factor of √2 - 1 = √2 + 1.}\\

\textsf{So, rationalising the denominator them}\\

 \sf{ \:  \:  = \frac{1}{ \sqrt{2}  - 1}   \times  \frac{ \sqrt{2} + 1 }{ \sqrt{2}   + 1} } \\

 \sf{ \:  \:  =  \frac{1( \sqrt{2}   +  1)}{( \sqrt{2} - 1)( \sqrt{2} + 1)  } } \\

\textsf{Now, comparing the denominator with (a-b)(a+b), we get}\\

\textsf{\: \: \: a = √2 and b = 1.}

\textsf{Using identity (a-b)+a+b) = a²-b², we have}\\

 \sf{ \:  \:  =  \frac{ \sqrt{2} + 1 }{( \sqrt{2} {)}^{2}  - (1 {)}^{2}  } } \\

 \sf{ \:  \:  =  \frac{ \sqrt{2}  + 1}{2 - 1} } \\

 \sf{ \:  \:  = \frac{ \sqrt{2}   + 1}{1}  } \\

 \sf{ \:  \: \frac{1}{x}  =  \sqrt{2} + 1 } \\

\textsf{Now, adding both values x and 1/x, we get}\\

 \sf \therefore \: x +  \frac{1}{x}  = (\sqrt{2}    - 1 )+ ( \sqrt{2}  + 1 )\\

 \sf \: x +  \frac{1}{x}  = \sqrt{2}   \cancel{  - 1} + \sqrt{2}   \cancel{+ 1 }\\  \\

\sf \: x +  \frac{1}{x}  = \sqrt{2}  +  \sqrt{2}  \\

\sf \: x +  \frac{1}{x}  =2 \sqrt{2}  \\

 \bf \underline{Hence, the\: value\: of \: x +  \frac{1}{x}  \: is \:2 \sqrt{2} . } \\

Similar questions