Math, asked by kritipathakstudy22, 10 months ago

if x= root2- root3 then find the value of [x-1/x]^2

Answers

Answered by Anonymous
6

GIVEN:

x=\sqrt{3}-\sqrt{2}

TO FIND:

★The value of (x-\dfrac{1}{x}) ^{2}

CONCEPT USED:

★We would first find \dfrac{1}{x} and then we will subtract  \dfrac{1}{x} from x and then square the number obtained.

ANSWER:

We have,

=>x=\sqrt{3}-\sqrt{2}

=>\dfrac{1}{x}=\dfrac{1}{\sqrt{3}-\sqrt{2}}

On rationalising the denominator,

=>\dfrac{1}{x}=\dfrac{1(\sqrt{3}+\sqrt{2})}{(\sqrt{3}-\sqrt{2})(\sqrt{3}+\sqrt{2})}

=>\dfrac{1}{x}=\dfrac{(\sqrt{3}+\sqrt{2})}{(\sqrt{3})^{2}-(\sqrt{2}^{2})}

\large\green{\boxed{(a+b)(a-b)=a^{2}-b^{2}}}

=>\dfrac{1}{x}=\dfrac{\sqrt{3}+\sqrt{2}}{3-2}

=>\dfrac{1}{x}=\dfrac{\sqrt{3}+\sqrt{2}}{1}

=>\dfrac{1}{x}=\sqrt{3}+\sqrt{2}

\large\purple{\boxed{\dfrac{1}{x}=\sqrt{3}+\sqrt{2}}}

______________________________________

Hence,

=(x-\dfrac{1}{x}) ^{2}

=[\sqrt{3}-\sqrt{2}-(\sqrt{3}+\sqrt{2}) ^{2}]

=[\sqrt{3}-\sqrt{2}-\sqrt{3}-\sqrt{2})]^{2}

=(-2\sqrt{2}) ^{2}

=8

\huge\orange{\boxed{.°.(x-\dfrac{1}{x}) ^{2}=8}}

Similar questions